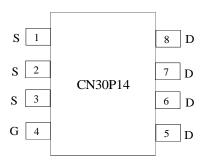
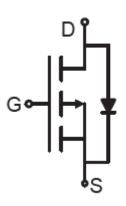
P-Channel Enhancement Mode Power MOSFET CN30P14

General Description:

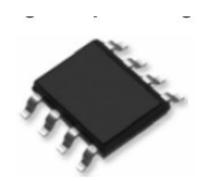
The CN30P14 uses advanced trench technology to provide excellent $R_{\rm DS(ON)}$, low gate charge and operation with gate voltages as low as 1.5V. This device is suitable for use as a load switch or in PWM applications.


Applications:

- Battery protection
- Load switch
- Power management


Features:

- $$\begin{split} \bullet & V_{DS} = \text{-}30 V, I_D = \text{-}14 A \\ & R_{DS(ON)} < 12.5 \text{m}\Omega \text{ @ } V_{GS} \text{=-}4.5 V \\ & R_{DS(ON)} < 8.5 \text{m}\Omega \text{ @ } V_{GS} \text{=-}10 V \end{split}$$
- High power and current handing capability
- Lead free product is acquired
- Surface mount package
- Available in SOP8 Package
- Pb-free, rohs compliant and halogen free


Pin Assignment

Schematic diagram

Top view

Ordering Information

Part Number	Device Marking	Package	Operating Ambient Temperature
CN30P14	30P14	SOP8	−40°C to 85°C

Absolute Maximum Ratings (TA=25°Cunless otherwise noted)

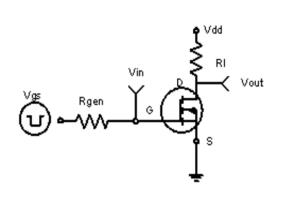
Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V_{DS}	-30	V
Gate-Source Voltage	V_{GS}	±20	V
Drain Current-Continuous	I_{D}	-14	A
Drain Current-Pulsed (Note 1)	I_{DM}	-50	A
Maximum Power Dissipation	P_{D}	3.1	W
Operating Junction and Storage Temperature Range	$T_{ m J}$, $T_{ m STG}$	-55 to 150	$^{\circ}$

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$ 40	°C/W
--	--------------------	------

Electrical Characteristics (T_A=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	ource Breakdown Voltage B _{VDSS} V _{GS} =0V I _D =-250μA		-30	-32	-	V
Zero Gate Voltage Drain Current	I_{DSS}	V_{DS} =-30V, V_{GS} =0V	-	-	-100	nA
Gate-Body Leakage Current	I_{GSS}	$V_{GS}=\pm20V, V_{DS}=0V$	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	VDS=VGS,ID=-250μA	-1.0	-1.5	-1.9	V
Drain-Source On-State Resistance	D	VGS=-10V, ID=-8A	-	12.5	15	m Ω
Drain-Source On-State Resistance	$R_{DS(ON)}$	VGS=-4.5V, ID=-4A	-	14.5	18	m Ω
Forward Transconductance	gfs	VDS=-5V,ID=-14A	-	15	-	A/V
Dynamic Characteristics (Note4)						
Input Capacitance	C _I ss	V 15VV OV	-	2500	-	PF
Output Capacitance	Coss	V_{DS} =-15V, V_{GS} =0V, F=1.0MHz	-	400	-	PF
Reverse Transfer Capacitance	Crss	F=1.0MHZ	-	260	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	td(on)		-	14	-	nS
Turn-on Rise Time	tr	V_{DD} =-15V, I_{D} =-10A,	-	10	-	nS
Turn-Off Delay Time	td(off)	V_{GEN} =-10V, R_g =3 Ω	-	40	-	nS
Turn-Off Fall Time	tf		-	20	-	nS
Total Gate Charge	Qg	V 15VI 10A	-	46	-	nC
Gate-Source Charge	Qgs	V_{DS} =-15V, I_D =-10A,	-	10	-	nC
Gate-Drain Charge	Qgd	V_{GS} =-10V	-	12	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V_{SD}	VGS=0V,IS=-2A	-	-	-1.2	V


Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. $R_{\theta JA}$ is measured with the device mounted on 1 in FR4 board with 2oz. copper, in a still air environment

with $T_A=25^{\circ}C$, $t \leq 10$ sec. The value in any given application depends on the user's specific board design.

- 3. Pulse Test: Pulse Width \leq 300us, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production

Typical Electrical and Thermal Characteristics

Switching Test Circuit Figure 1

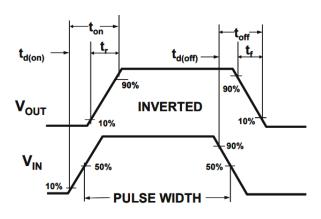
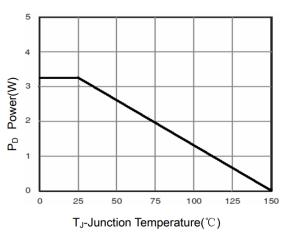



Figure 2 Switching Waveforms

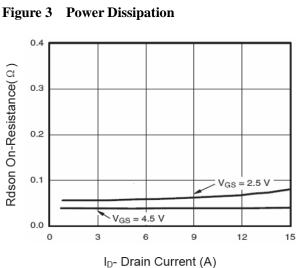
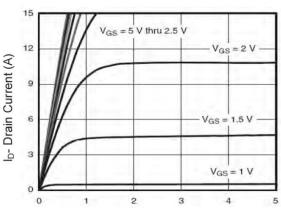
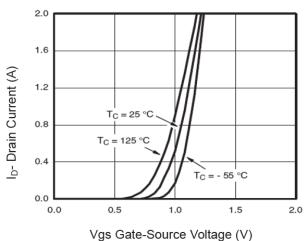




Figure 5 Drain-Source On-Resistance


Vds Drain-Source Voltage (V)

Figure 4 Output Characteristics

Figure 6 Transfer Characteristics

CONSONANCE

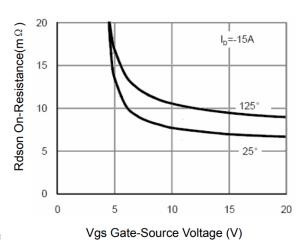
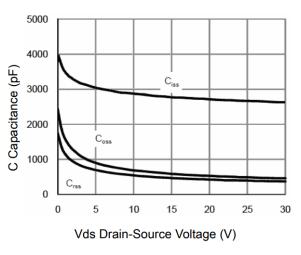



Figure 7 Drain-Source On-Resistance

Figure 8 Rdson vs Vgs

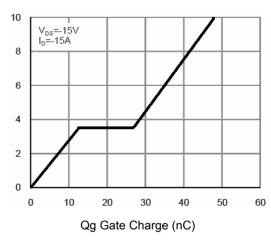


Figure 9 Capacitance vs Vds

Figure 10 Gate Charge

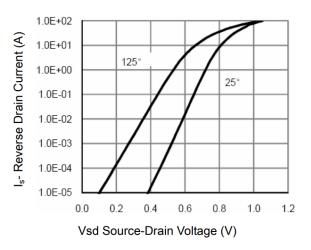
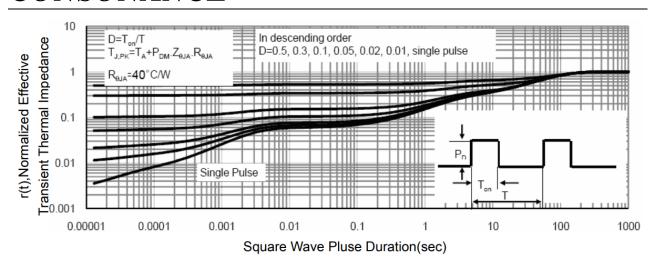
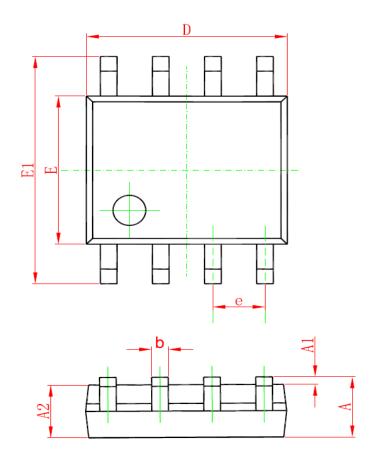



Figure 11 Source- Drain Diode Forward

Vgs Gate-Source Voltage (V)


CONSONANCE

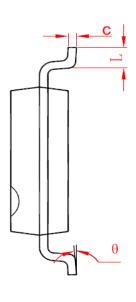


Figure 12 Normalized Maximum Transient Thermal Impedance

Package Information

SOP8 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions I	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max		
Α	1. 350	1. 750	0. 053	0.069		
A1	0. 100	0. 250	0.004	0.010		
A2	1. 350	1. 550	0. 053	0.061		
b	0. 330	0. 510	0. 013	0.020		
С	0. 170	0. 250	0.006	0.010		
D	4. 700	5. 100	0. 185	0. 200		
E	3. 800	4. 000	0. 150	0. 157		
E1	5. 800	6. 200	0. 228	0. 244		
е	1. 270 (BSC)		0. 050 (BSC)			
L	0. 400	1. 270	0.016	0.050		
θ	0°	8°	0°	8°		

Consonance Electronics does not assume any responsibility for use of any circuitry described. Consonance reserves the right to change the circuitry and specifications without notice at any time.